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1. Introduction


Green’s theorem indicates the relationship between a line integral around a simple closed curve C and a double integral over the plane region D bounded by C. This theorem is an application of the fundamental theorem of calculus to integration of a certain combination of derivatives over a plane. It can be proven easily for rectangular and triangular regions. As both sides of its equality are finitely additive

 and almost all planar regions can be divided into triangles and rectangles, the result holds for any planar region.
 
Its generalization to non-planar surfaces (proved directly using the finite additivity of both sides) is the Stokes’ Theorem described below.


1.1 Green’s Theorem
The formal statement of Green’s theorem
 is as follows: Let S be a sufficiently nice region in the plane, and let 
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where the boundary [image: image2.png]


S is traversed counterclockwise on its outside cycle (and clockwise on any internal cycles as you can verify using zippers).
Theorem interpretation:
 Green’s theorem is a form that the fundamental theorem of calculus takes in the context of integrals over planar re

For a rectangle: By the ordinary fundamental theorem of calculus, we have
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For a right triangle: For convenience, we choose a triangle bounded by line x = 0, y = 0, and [image: image4.png]


.


We similarly get
[image: image5.png]yebx=e—yalb
i J’"‘ CCS LA
y=0  x=0 y=0
o

= | tata-aylby) v O 30dy— [ (e b—br/a)-vi(x O
=0 x=0



.
Rearrangement of the right hand side gives the theorem for rectangles and right triangles.
It means that for R, a rectangle or right triangle in the x-y plane (for which dS = dSk), we have
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Both sides of this equation are finitely additive, i.e., if we evaluate either side over two disjoint regions, the result will be equal to the sum of the result of separate evaluations on the two regions
.
 This is true even if the regions share a common boundary because the line integrals will cancel out over the common boundary that ceases to be a boundary.
The result follows from additivity for any region that can be broken up into rectangles and triangles, which accounts for most regions we will encounter.
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